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A HIGH ORDER GENERALIZED METHOD OF AVERAGING*

DAVID E. GILSINNS.

Abstract. We develop a high order generalized perturbation technique that extends the Krylov-
Bogoliubov-Mitropolsky method of averaging to vector systems written in normal form with multiple
angular components. An algorithm is presented that iteratively gives the terms in the asymptotic approxima-
tion. A nonresonance condition is assumed that guarantees the smoothness of the terms. The main result
establishes that the absolute error between the unaveraged normal system and its Nth order approximation
is of the order of the Nth power of the perturbation parameter for a time interval of length the order of
the reciprocal of the perturbation parameter. The high order algorithm is applied to a coupled van der Pol
oscillator system. Some numerical results are given to show that the main result reflects actual computational
experience.

1. Introduction. One of the techniques used to study periodic phenomena associ-
ated with nonlinear mechanical systems is to reduce the study of the describing
differential equations to a standard form

(1.1) eX(t, x), x(O, e)= Xo,

where x R ". The method of integral averaging of Bogoliubov and Mitropolsky [7]
can then be applied to put (1.1) into a form

eXo(x),(1.2)

where

(1.3) Xo(x)= lim
1 I0

r

T-.o- X(t, x) dt.

The qualitative behavior of the solutions of (1.1) can be studied through (1.2).
Higher order methods of averaging have been studied by several authors. Perko

[30] extended the averaging procedure for (1.1) to an Nth order result. In particular,
he showed that there exists a transformation of the form

N

(1.4) x y + Y’. ev(t, y)

that transforms (1.1) into an equivalent form

N
N+ (t, y, e)(1.5) : E e%(Y)+ e y+l

/=1

He develops a specific term by term algorithm to generate vi, fi, and establishes an

approximation result that shows that the solution of (1.1) and a certain transformed
solution of

(1.6)

with the appropriate initial condition, compare to within a power N of the small
parameter e. Volosov [35] considered the same question, but after giving a procedure
for the first two terms did not give a full term by term algorithm to general order.
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Zabreiko and Ledovskaja [36] do give a term by term algorithm, although in a
somewhat different form from Perko. They also state but do not prove an Nth order
approximation theorem. Morrison [22] developed an averaging algorithm to the second
order for (1.1).

When one is dealing with weakly perturbed oscillators of the form
2(1.7)

f 1," ", m, wi>0, where z =(z, ..., z,,), z =(2,..., 2n), it is sometimes more
appropriate to introduce polar type coordinates of the form,/3 real,

(1.8) z. x sin wO, xo cos

/" 1, 2,. , m. Then (1.7) reduces to a system of the form

(1.9) d + cO(0, x), k eX(O, x),

where d co1(1, 1,. , 1), x col(x1,..., x,), 0 col(0x,..., 0,,). (1.9) is said to be
in normal form.

In [14] the author extended the Bogoliubov and Mitropolsky [7] averaging result
to (1.9), and developed a comparison theorem between (1.9) and

(1.10) d + cOo(x), 2 eXo(x),

where Oo, X0 are averages of the form

(1.11) fo(x) lim
1 IoTr-, - f(O + S, X) ds,

0 + s (01 + s, , 0m + s). This form of averaging was previously used by Diliberto
[12]. Formal properties of this method of averaging have been studied by Kirchgraber
[17.]. These generalized averaging procedures have been used in orbital calculations
by Velez and Fuchs [34] and in nearly Hamiltonian systems of two degrees of freedom
by Murdock [25]. Sethna and Schapiro [31] have applied the results in [14] to flutter
unstable dynamical systems. Another first order generalized averaging theorem has
also been stated in Arnold and Avez [3]. Giacaglia [13] and Hale [15] relate this
averaging principle to the study of stability properties of dynamical systems near
invariant manifolds.

The essence of the method of averaging rests upon introducing a near-identity
transformation into (1.9) that reduces it to a system that is a high order perturbation
of (1.10). For an overview of the use of near-identity transformations see Neu [29].
Near-identity transformations represent a method of introducing local coordinates
around periodic solutions. This idea of using local coordinates to decompose systems
has been extended to functional differential equations by Stokes [33].

In the present paper the author extends the result of Perko [30] to systems of
the form (1.9). In particular, (1.9) is transformed by

N N

(1.12) 0 & + e’ui(&, r), x r + ., e’wi(, r),
/=1 i=1

to a system that is a high order perturbation of

N N

(1.13) 4; d + Y’. eiePi(r), E eiRi(r).
i=1 i=1

Explicit expressions for computing (1.13) up to second order terms have been given
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by several authors. See, e.g., Bajaj, Sethna and Lundgren [4], Morrison [23] and
Nayfeh [27]. Musen [26] has developed a formal procedure that is analogous to the
methods of this paper. His approach is by way of certain formal operators. No proofs
are given, though, on the nature of the approximation obtained. A somewhat different
approach to higher order perturbations was taken by Agrawal and Evan-Iwanowski
[1]. They approached system (1.7) and applied the Bogoliubov and Mitropolsky [7]
perturbation technique directly to obtain higher order approximations. They derive
the subsidiary equations that must be solved to obtain the perturbation terms but do
not explicitly solve them. Finally, Chow and Mallet-Paret [9], [10] develop a different
high order scheme but do not treat the problem of multiple angles as developed in
this paper.

In 3 the algorithm is given to compute i, Ri, u, w. Two lemmas are also
proven that establish the differentiability properties of these functions. The main result
of this paper is Theorem 4.1, in 4. The proof follows exactly the lines of the proof
in Perko [30, Thm. 1]. Perko’s argument, however, has been modified by the author
to take into account the appearance of multiple angles in (1.9). All of these results
depend on the generalized notion of derivatives of vector valued functions of several
vector variables. This is discussed in 2, and the necessary algebraic relations are
given. These derivatives are nothing more than the Fr6chet derivatives specialized to
finite dimensional space. Finally, in 5 the results are applied to a weakly coupled
system of van der Pol oscillators.

2. Notation. Let R"* be an m-dimensional real Euclidean space, G" c R" com-
pact and convex and E R" G"*. Let f(O, x) P(), for (0, x) , if f is continuously
differentiable in 0, x, up to order a and periodic in 0 with vector period 2rr/to
(2rr/tol,..., 2rr/w,,).

For (0, x), (h, k) ,f Po (E) define (see Bartle [5]) the Fr6chet derivative

=(Ofi (hi),=l.m,(2.1t Df(O, x) h
\OOi/ i,i=l,

and similarly for D2f(O, x) k. Then, following Dieudonn6 [11], define

(2.2) Dr(O, x) (h, k)=Dl.f(O, x) h +Dff(O, x) k,

and, for n > 0,

(2.3)
D’f(O, x) (hi, k) (hn, kn)

D(D"-lf(o, x). (hi, kl)’’’ (h,-1, k,-1))" (h,, k,).

If h h, h, k k, k, set

(2.4) (h, k)" (h, k).. (h, k) (n times),

and

(2.5) D"f(O, x) (h, k)" D(D"-lf(O, x) (h, k)"-)(h, k).

If a >- N + 1, (0, x) e , the Taylor series becomes

f(O + h, x + k)=f(O, x)+Df(O, x) (h, k)+.

(2.6)
+ DlVf(O, x). (h, k)N + Ru(O, x),
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where

(2.7) Ru(O,x)= (1-y)rDI+’f(O+yh, x+yk) d .(h,k)I+’.

For the derivation of the Taylor series above see either Dieudonn6 [11] or Liusternik
and Sobolev [20].

The definition has some algebraic consequences that will be needed in later
sections. Let (O,x)eZ,/ P,(Z);

(2.8) D af(O,x) bihi, bik Z abiDfi(O,x)" (hi, ki),
i=i i= i= i=

where M, N > 0, and a, bj are constants. If k >= 1 then, by induction on k and rules
of powers of polynomial forms,

(2.9)

D’f(O,x) eiuj,

i=1
Z

ix +""+i
(Uh, Wh)""" (Ui, W),

where 1 -</’1," ",/’k =< N. (See, e.g., Liusternik and Sobolev [20]). Also, by induction
on k,

(2.10)

D O, x) eiu+e Uu+a, Y e wi+e W1+1
i=1 i=1

k

=D O,x)" Z eiui, e’ +

i=1

where UN+I, WN+I, RN+I are error terms.
Let f e P,(), for some a > 0. Define the mean value of f by the relation

(2.11) Mof= lim
1 Iorr-.oo- f(O + s, x) ds,

where 0 + s (0 + s, , 0 + s). A sufficient condition for the limit in (2.11) to exist
independent of 0 is that the frequencies w, , w of (0, x) with respect to 0 be
linearly independent over the integers. In this case (2.11) can be replaced by

(2.12) Mo[ [(0, x) dO.
(2) oo

For a proof of this result see Arnold [2]. From a physical point of view, imposing this
independence requirement amounts to restricting oneself to nonresonant mechanical
oscillations. In fact the methods developed in this paper are applicable to systems
generating self-sustaining periodic oscillations.

3. The averaging algorithm. Let O, X eP(), and

d d + cO(0, x), 0(0) 00,
(3.)

=eX(O,x), x(0) x0,
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where d (1,. , 1). To average (3.1), a near-identity transformation of the form

N N

(3.2) 0 + Y eiui(O, r), x r + e wi(, r)
i=1 i=1

is sought that reduces (3.1) to

(3.3)

N
N+I(I)N+q=d+ E e dPi(r)+e (,r,e),

i=l

N
N+i’= Y’. e Ri(r)+e 1RN+x(&,r,e),

i=1

where Ui, Wi, fi, Ri are to be determined. The initial conditions for (3.3) are implicitly
determined by

(3.4)

N

b(O, e)=Oo t ui((O,e),r(O,e))/O(eN+l),
i=l

N

r(O, e)=Xo- Eiwi((O, E), r(O,
i=l

The computations in this section are generalizations of those given in Perko [30].
Insert (3.2) into the left-hand side of (3.1) and get

(3.5)

N

( / 2 e Dui(, r). (, ),
i=l

N

i-1

From (3.3), (2.8) and (2.10), (3.5) becomes

i(]___ ) N+I
N

iD
N i-1

( / E E lUi(, r)" d / ., e Dui(dp, r). (f)i-], Ri-]) / E Ell(b, r, el,
i=1 i=2

(3.6)

2 i / ’. eiDiW/(b, r). d + ’2 e’ Dwi(&, r). ((i-], Ri-i) / EN+lE12(t, r, e).
i=1 i=

Now expand the right-hand side of (3.1) by the Taylor series (2.6) and use (3.2), (2.9)
and (2.10) to get

d + eO(O, x) d + eO(&, r)

+ e DO(&, r)!.
i=2 k=l

+e+XE2x(&,r,e),
(3.7)

eX(O,x)=eX(&,r)
N

+ e DX(, r).
i=2 k=l

E (u,, w,)... (u, w))
h+...+ik=i-1

E (u,, w,)... (u, w))
]X+"’+jk =i--1

+eN+1E22(c, r, e).
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Combining (3.6) and (3.7) gives

4; d + e{(R)(, r)-Daux(, r). d}

+ e D O(, r).
i= k=l

+e N+IE31(q, r,
(3.8)

i e{X(&, r)-Da WI(O, r). d}

+ . e D/cX(qb, r).
i=2 k=l

+eN+lE32($, r, e).

Y. (u,, wh)""" (u, w)
]+"" +]k i--

-Duk(qb, r) (dpi_/c, Ri_/c)]-Dxtzi(qb, r d}

2 (uh, w)... (u, w)
jt+...+]k=i-1

-Dwk(qb, r) (dPi_k, Ri_k)] --Dl Wi(r, r) d}
To simplify the notation define the new functions

Fx(, r) (R)(&, r),

G(, r)= x(, r),

F/($, r)= D (, r).
jl+...+/k =i-1

(3.9)

Gi(, r)
k=l

(uh, wh)""" (u, w)

-Du/C (, r) (tffi_k, Ri-/c )]
ui,, wh)’’" (u, w

-Dw(, r) (lffi_k, Ri-/c)]
for 2,..., N. If (3.3) and (3.9) are compared, the following differential equations

(3.10a)

(3.lOb)

DlUi(, r) d =Fi(, r)-dPi(r),

DWi(, r) d Gi(q, r)- Ri(r),

1,..., N must be solved. In order to solve (3.10) for ui and Wi, one must make
appropriate choices of the functions i and Ri for 1,. ., N.

Since (3.10a) and (3.10b) are formally the same, one need only solve, for example,

(3.11) Du(, r) d =F(, r)-(r),

where F e P,(E), for c sufficiently large. Subscripts have been dropped in (3.11) in
order to simplify the notation somewhat.

F can be expanded as a Fourier series

(3.12) F(, r)= Y, Y. F,...,.,(r) e "‘’*’+’’’+"’’*’),

where x/---i- and

(3.13) F,,...,,.(r)= -(}ri o
F(O, r) e
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The mean value of F(b, r) is given by

Define a new series

F(b, r) d$.

(3.15) u(b,r)= F.... Y. i;i ) e

Inl # 0, where Inl- Inl +... + Inl and (n, to) nltol +’’" + n,,,to,,,. Suppose, further-
more, that the vector frequency to (to1, , to,,,) satisfies

(3.16) I(n, a,)l->-Alnl-"+

for all n =(nl,’"", n,), n integer, n #0, A >0. (3.16) holds for almost every to and
all n 0 (Koksma [18]).

If (3.15) and its derivative converge uniformly then a direct computation shows
that u satisfies

(3.17) Du($, r) d F(qb, r)-(M,uF)(r).

Comparing (3.17) with (3.11) indicates that one must choose

(3.18) (r) (M)(r).

Therefore, in (3.10) one must choose

(3.19) (r) (M)(r), R,(r) (M,G,)(r)

for 1, 2,...,N.
LEMMA 3.1. Let N, k >0 be given, O<=n <-N+ 1, cr an even integer, cr >-

N + 2m + 3. If d is defined by (3.18), F PT(X,), to satisfying (3.16), then (3.15) solves
(3.17), is uniformly convergent and differentiable to order N + 1 and the series ]’or
Dnu(qb, r) is also uniformly convergent.

Proof. Define the operator As =Y.k=l (0/0bk) F ePo, tX) implies there exists a
B > 0 such that IA,,F($, r)l <-- B. By integration

) f/(tol’" ’2m AF($, r) e -i("11’1+’’’+""’"’") dqb

(3.20)

/S=I
""nm

where in (3.20) represents /----. Choose c even and set M 1/(minos<__, Itosl").
Then (3.20) implies

(3.21) ]F,...,.(r)l <-

From (3.15), (3.16) and (3.21),

MB

(3.22) u (4,, r)[ ,, =2_ ,.. 2= In 11 -: 2-In,,I
H61der’s inequality implies

1/a

Io1_--( In l
s=l
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where/ c/(c- 1). Then (3.22) becomes

-<c E E inl
1-m-l, Inl0(3.24)

for some positive constant C. The series on the right of (3.24) converges or diverges
with

(3.25) .E E [nl
1

(see, e.g., Hyslop [16]). However, there are 2-(7)() integral solutions to

Inl +’ + Inl Inl p, where exactly f, 0 f m 1, of the n are 0 (see, e.g., Berman
(r-) /(r--1) Therefore, (3.25) satisfiesand Fryer [6]) Furthermore - p’-

(, 1 f) ( 2’ )( m )( )(3.26) E N -;
o=1 pP-- r= (r-i) m-r ,p

The series on the right of (3.26) converges for each r 1, 2,..., m provided a N
2m + 2 and a even as assumed above.

A similar argument can be used to establish the differentiability of u. To do this,
however, note that the higher order derivatives (2.3) can also be written in terms of
generalized multilinear forms. If (al, a:),. , (al, a) e 2, then by induction on k,
using (2.8), if u e P: (),

2 2

(3.27) Du(, r). (al, a). (a, az)= E E Di,...iu(, r). ai,1...ai,
i=1 ik=l

where D,...u(, r), i,..., i 1, 2, are the higher order partial derivatives arising
from (2.1). For example, if h e G% k e R, then one has by direct computation

(3.28) D12u(, r). h. k E O2Ui
hiEkh

i= 3 / i=x,...,

Let p, q be positive integers such that p +q k. From (3.27) one needs only
estimate, using (3.15),

(3.29) IDDu(,r)l < 2 2
IF,...(r) I (’*"*1

Since N eP(N), in (3.12), then DqF...(r) is -q times continuously differentiable
in G% 0 N q N . Applying integration by parts to Du(, r) implies that there exists
a constant B such that

MB
(3.0 oF...(rl I1+,, ,+11

where has been assumed even as before. By a straightforwardcomputation, there
exists a contant C such that

(3.31) I e(’+’"+l Cl I1’’’ WIn
h+".+] =p

for some constant W >0, since n... In N( Inl). Combining (3.16), (3.29),
(3.30) and (3.31) gives that there exists some constant C> 0 such that

(3.32) IDDu(, r)l C =2_ 2_ lnl-l -- Inl 0.
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The series on the right converges or diverges with

(3.33) i,,2 In[
1

--m--p--1

and, as in the case of (3.26),

(3.34) F. [-,,-,-1
<- m

s=l sin r=l r-l)! m-r rs

The series on the right converges provided, for r 1, 2, , m, a -p ->_ 2m + 2.
For an Nth order expansion it is clear that 0_-<p, q_-<N + 1, so that one must

choose c even and a _-> N + 2m + 3 _-> p + 2m / 2, which would imply that a -p _->
2m / 2. This proves the lemma. For a similar result in the analytic case see Bogoliubov,
Mitropolsky and Samolenko [8].

Equation (3.27) can be extended by repetitive application of the product rule,

DP(Dkf(cb, r). (u, U21) (Ulk, U2k))(Sll, $21) (Slp, S2p)

(3.35) Dk+nf(, r) (DnaUll, Dnau21)
nO+...+n =p

(D"kUk, D"kuzk) (s, $21)""" (Slp, S2p),

where nv 2=1 mvtz, p 0, 1,..., k and 2=1 mud 1 for z 1, 2,..., p. There are
skp terms in the sum.

LEMMA 3.2. Given N >- 1, 19, X P, (Z), where to satisfies (3.16), a >_- N + 2m + 3,
a even, then, from (3.10) and (3.19), ui, wi, i, Ri pN-i-1 (.).

Proof. From (3.9) F1, Gx e P(Z) and are, therefore, continuously differentiable
of order N, and from Lemma 3.1 u, w are continuously ditterentiable of order N.
From (3.14), (3.19), 1, Rx are continuously ditterentiable of order N in R.

Inductively suppose that k, Rk, uk, wk are continuously ditterentiable of order
N-k + 1 for k 1,. , i- 1, and that uk, wk are periodic with vector frequency to.

From (2.8), (3.9) and (3.35), one can write

DN-i+lFi(qb, r)

(3.36)
k=l h+...+h,=i-1 no+...+nt,=N-i+l

D k+,oO(b, r)

(D" uh, D"I - -wh) (D uk,D w)

y’. Dno+1

no+nl=N-i+l
o ),Uk(qb, r) (DNldPi_k, 1Ri_k)

and similarly for DN-i+ Gi(, r). By the inductive hypothesis, (bi, Rj are ditierentiable
of order N-] + 1 for/" 1, , i- 1. Set/" k. Then dOi_k, Ri-k are continuously
differentiable of order N-(i-k)+l for i-k=l,...,i-1 or for N-i+2 to N.
Therefore, for 0-<_ n <-N-i + 1, D"li_k, D"IRi_k exist and are continuous. Again
by the inductive hypothesis, Uk is differentiable of order N- k + 1 for k 1, ., 1
and periodic with vector frequency to in . For 0 =< no =< N + 1, one has 1 -< no + 1 -<_
N- + 2 <- N- k + 1 as above. Therefore, D"Uk(qb, r) exists continuously and is periodic
with vector frequency to in b. A similar argument holds for Wk. Finally, if 1 --<_ k =< 1
and O<=no<_N-i+ 1, then 1-<k +no<=N, and therefore, Dk/"(R)(qb, r) exists con-
tinuously and is periodic of vector frequency to in . Combining these, (3.36) shows
that DN-i+IF(, r) exists continuously and is periodic with vector frequency to in b,
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and similarly for Gi. Now, from (3.15) ui, Wi are also continuously differentiable of
order N-i + 1 and periodic in $ with vector frequency w by uniform convergence.

4. Main result. In this paper the Nth order approximation to the solution of
(3.1), for N _-> 1, will be defined as

N-1 N-1

(4.1) 0r br + Z e’ui(4’l, rN), xN rI + ., e’wi(qb, rl),
i=1 /=1

where ($, rr) is the solution to

(4.2) =d + Y. e(r), i= , eR(r).
j=l j=l

dPi, R are defined by (3.9) and (3.19), and ui, wi are solutions of (3.10). The initial
conditions for (4.2) are given by

(4.3) 4r(0, e) 4,o(e), r(0, e) rNo(e).

These are implicitly defined by the relations

(4.4)

N-1

o(e)=0o E eu(o(e),ro(e))+O(e’),
i=1

N-1

ro(e) xo- X e%(,/,ro(e), ro(e)) + O(e"),

where (0o, x0) is the initial condition for (3.1).
For e sufficiently small, the initial conditions (4.4) can be written explicitly in the

form

N-1 N-1

(4.5) 4)ro(e) ao +
i=1 ./=1

This follows from the implicit function theorem.
In (4.4), expand uj, wj in Taylor series. Introduce (4.5) for $to, rNo, and use

(2.10) and (2.9) to give

for ] 1,..., N-1. Substitute (4.6) into (4.4) on the right, and use (4.5) on the left
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and the summation interchange formula

(4.7) E E e’+iA(i,f)= E e A(i,f-i +O(eN)
]=1 i=1 ]=2 \i=1

on the right. Equating powers of e gives

0 XO

O --t/l(Oo, 0),

(4.8) fll =-Wl(aO,/3o),

]+. +] i-]

il k=l’-" () ]+... +] i-]

for 2, 3, , N-1.
THEOREM 4.1. Given L >0, N 1, G a convex region in R, and pick roe G.

Let O, X in (3.1) lie in P;(N), even, N+2m+3, where or all n =(n,... ,rim),

(4.9) I(n, o)l =>Aln[-("/1),

A > 0, constant. Let

dr
(4.10) _= R(r), r(O) ro

have a solution r= gx(’) which remains in G for O<=’<-_L. Then"
(1) There exists an eN >0 such that for 0< e _-< eN the system

(4.11)
=d+eO(O,x), 0(0, e) 0o,

Yc =eX(O,x), x(0, ) =Xo

has a unique solution (O(t, e),x(t, e)), which remains in R" G" for O<=t<=L/e.
(2) The autonomous system

4;=d+ e](r), 4r(0, e)=4ro(e),
]=1

(4.

]=1

with ], R] defined by (3.9) and (3.19), ro, rro defined by (4.4), has a unique solution
(rbr(t, e), rr(t, e)), which remains in R x G" or O<-_t<-L/e.

(3) The Nth order approximation is given by

o(t, e 4,,(, e + Y. e%(4,(t, e), r(t, ),
]=1

(4.13)
N-

x(t, e) rr(t, e) + Y e’w](4r(t, e), rr(t, e)),
]--1
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where ui, wj are solutions of (3.10), periodic in 49 with angular vector frequency oo, and
continuously differentiable of order N-] + 1. The Nth order approximation satisfies

(4.14)
IO(t, e Ou(t, e )[ <-- Cue s,
Ix(t, )-xu(t, e)[ <- G, u,

for 0 <- <=Le, CN some positive constant dependent on N and independent of e.

Proof. The proof begins with showing that the autonomous system (4.12) has a

unique solution (N(t, e), rr(t, e)) that remains in some set R" S’, where S’ G
is convex and compact, for 0 <- <-_ Lie for 0 < e <_- eN, some eN > 0.

By hypothesis, r gl(r) remains in G" for 0 <- r -< L. Let

(4.15) S {r e R m" r gl(r), 0_-< r <-L}.

As a continuous image of a compact set S’ is compact. Since G is an open domain
and S = G", there exists po > 0 such that

(4.16) po inf ]x y 1.
xeS

yRm-G

Let WN(r, e) be the solution of

dw
(4.17) Rl(w)+" + e 1R(w), w(0, e) rNo(e),

dr

where rNo(e) is defined by (4.5), (4.8). For w G", Rj(w) is continuously differentiable
for 1, 2,..., N as shown previously. Then from standard theorems on existence,
uniqueness of solutions and continuity with respect to parameters and initial conditions
there exists an eN > 0 and a unique solution WN(Z, e) of (4.17), continuous with respect
to e such that for 0 <_- r _-< L, 0 < e <- eN,

(4.18) Iwu(r, e)-gl(r)l<Oo.

The fact that Iruo(e)-Rol <= Cue from (4.5) for some Cr, N-> 1, has been used to
establish (4.1 8).

Now define the set

(4.19) SI ={WRm:
$1 c G and is compact. Let H(S1) be the convex hull of $1. H(S1) is compact (Stoer
and Witzgall [32]). Since G" is convex, H(S) G".

Let

(4.20) 01 inf Ix -y].
xH(S1)
yRm--G

Since H(S1) is compact and in G, which is open, pl > O.
By uniqueness the solution of

(4.2 1)
dr

eR l(r) +" + e NRN(r), r(O, e rNo(e
dt

is given by

(4.22) rN(t, e)= WN(et, e).
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Therefore,

(4.23) {r R r rN(t, e ), O <--_ <-- L/ e, 0<e <-- EN} c H(S1) am.

If ru(t, e) is inserted into (4.12), let &u(t, e) be the solution of the & equation
subject to &N(0, e)= &N0(e). Define the improved Nth order approximation by

(4.24)
O(t, e)= Ou(t, e)+ eUuu(Ou(t, e), r(t, e)),

2u(t, e)= xN(t, e)+ eUwu(&u(t, e), ru(t, e)),

where 0u, xr are constructed in (4.13).
Let (O(t, e), x(t, e)) represent the unique solution of (4.11) on its maximal interval

of solution 0 <= <- tl(e ).
Define

(4.25) $2 {y e R"" ly w[-< 01/2 for some w e H(S1)}.

82 is closed and bounded and therefore compact. $2 is also convex. For, let yl, Yp
$2, ai>0, =1 ai= 1. Consider alyl+’’ "+cpyp. To each y there corresponds wi
H(S1) satisfying [y- w] _-< pl/2. But by convexity a w +" + apwp H(S1), and there-
fore ](alyl +" + apyp)-(l Wl +" + apwo)] <-_pl/2. This means that

(4.26)
/O1

dist (Sz, R G’) >-2-.
Z

From (4.23), ru(t, e)H(S1) for O<=t<=L/e, 0<e -<eu. Furthermore, uj, w are
continuously differentiable of order N-j + 1 and periodic in O. They are bounded
on RmxH(S1), since H(S1) is compact. Therefore, from (4.25), (4.24) and (4.13),
there exists an eN>0 such that u(t,e)Sz or (Or(t,e),N(t,e))eR’xS2. By the
convexity of Sz

(4.27) &u(t, e) + h [flu (t, e) Ou(t, e)], ru(t, e) + h [u (t, e) ru(t, e)]

are in R x 82 for 0 <- <--_ L/e, 0 < e <= eu and 0 =< A _-< 1.
From (4.24), (4.13), (4.12), (2.8), one can write

0-0" x)-O(6,,, ;,,)] + o(&,,

(4.28)

N N N

eiF/(tN, rN)-- E ’. ei+iDui(qN, rN) (di)i(rN), Ri(ruN)),
]=1 ]=1 i=1

x o, x X d,,, ;,,)] + o’u,
N N N

E eiai(Ou, rN)-- E Y’. ei+’Dwi(u, ru)" (dpi(rn), Ri(rN)).
/=1 i=1 i=1

Using (2.6), write

(4.29)

O(N, J?U)= . D O(&u, rN)" (N--&U, fU--rN) +EIN(N, rN, e),
k=O

X(u, ;N) -. DkX(&N, ru)" (u--4)N,;r--ru)k +E2u(&N, ru, e)
k=0
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where

EIN(qbN, rN, 8

1 t)Io (1--Y)N-1DNO(qbN+’Y(N--qbN)’rN+Y(N--rN))dY]
(o- 4,, r,,,f

(4.30)

Using (4.13) and (4.24), define hi, h. so that

(4.31)

N

ehi N--N e E eJ-luj(qbv, rN),

N

eh2 N--rN e ., e Wi(N, rN).
i=1

From (4.29), (2.9) and changing indices by setting f + 1, one can write

(R)(0N, N) E DkO(bN, rN)
k=0

kN+l
i-1

j=k+l jl+...+jk =j--1

(4.32/

X(0N, N) DkX(qbN, rv)
k--t)

kN+l. e i-1

j=/+l

where

E1N(N, rN, e)

(4.33)

(Uh, Wh) (Ujk Wjk)+ .Nffalt.l((N, rN, e),

. (uh, wh) (uik, wlk)+ eN2N(bN, rN, e),
jl+’" "+Jk =j--1

(N- 1)!
(1 y)N-1DN(R)(4,N + eyhl, rN + eyh2) d (hi, h2)

E2, (qbN, rN, e

[( ,)io ,](N- 1)
(1-y)N-1DNx(,bN + eyhl, rN +eyh2) d (hi, h2)N.

We make use of the following algebraic relation in (4.32):

N-1 kN+l N ]-1 N-1 kN+l

(4.34) Y. Y’. ei-lA(k,j)=A(O, 1)+ 2 e i-1 Y’. A(k,])+ Y’. ., e-lA(k,]).
k=0 /=k+l j=2 k=l k=l ]=N+I

If we accumulate all terms that include the Nth or higher power into a new error term
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for each equation, we can write (4.32) as

N
j-1 k+ E e D 0(6r, ru)" E

/=2 jl+...+jk =i--1

+e"/,(,, r,, e),
(4.35)

x(o,) x(, r)

+ E e DX(, ru). E
i=2 h+’"+i =i-1

+eU(OU, r, e ).

(u, w0""" (u, w)

Introduce (3.9) into (4.35) next; then substitute (4.35) into (4.28) and get, noting the
definitions of F1, G1 in (3.9),

O--ON=e[O(O,x)--O(Ov,v)]+ e DUk(N, rN)" (Cbi-k, Ri-k)
i=2 k=l

N N
N+, , ei+iDui(ON, rN). (i,R,l+e u(&N, , el,

i= i=

k- e[X(O, x)-X(O, Y)]+ ei[ DWk(O, r)" (*i-k, Ri-k)]
j=2 Lk=l

N N
NE E e+Dw(,r) (,R)+e +(,r,e).

Now make use of the relation

(4.37)
N N N 1-1 N N

j+ N2 Y. e iA(i,i)= Y. e Y’. a(k,i-k)+e , e , A(k,N+i-k),
j=l i=1 j=2 k=l 1=1 k=l

and rewrite (4.36) as

0-0 [o(0, x)- o(&,,
N

i-1
N

/=1
(4:381

N+I+e (, r, e- 2 e’- 2 (,rl. (._, R._I
i=1 k=i

Since 0,X e P,(E) for a even and a <_-N + 2m + 3 and (& + eyhl, rN + eyh2) R" + 82
for 0 <- <- L/e, 0 < e <-_ ely, 0 <- y <- 1, because of (4.31) and (4.27), and since $2 is
compact there exists a constant, call it CN again, such that

(4.39) IIlr(O, rr, e )l <= C1, [’2r (&r, rv, e)l---< Cv.

Since ui, w are continuously differentiable and (&r, r) e R x S2, then for 1 _-< ] _-< N,
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jk <-N, O<-t<-L/e, O<-e

IDUk(d, rs) (+i-k (rs), Rs+i-k (rs))[ C,
(4.40)

]DWk(N, rs) (s+i-k(rs), Rs+i-k(rs))[ Cs,

where C is some constant. Combining the initial conditions for (4.12) with (4.4),
(4.1) implies that

(4.41) 0(0, e) 0o+ O(eS), x(O,e)=xo+O(eS).
Then, at 0, insert (4.41) into (4.24) and get the inequalities

(4.42) IO(O, )-gu(o, )l cu, Ix(O,
since 0(0, e)= 0o, x(O, e) Xo.

Combining (4.42), (4.40), (4.39) and (4.38) there exists a constant Cu such that
for O tmin (h(e),L/e) and O<e

[O(t,)--(t,)lCN + Io(o(s,),x(s,))-o(u(s,),u(s,))lds,
(4.43)

Ix(t,e)-(t,e)Ce +e X(O(s,e),x(s,e))-X((s,e),(s,e))ds.

Now define a new set

(4.44) S {y R" lY wl 0/3 for some w e S}.

Since S is convex and compact, so is S. Furthermore S c Gm.
Suppose there is a first point to(e)>0 in the open interval O<to<L/e such that

x(to(e), e) is a point in the boundary of S. Since t(e) represents the maximal interval
of existence then to(e) < h(e). Since (t0, e) S then either Ix (to, e)-(to, e)l Ol/3
or X(to, e)-2(to, e)l>0/3, otherwise X(to, e) would be an interior point of S for

Now , X eP(N) for NN + 2m + 3, and S is compact, so by the mean value
property there is some constant C such that

c(10(, -(, 1 + Ix(t, -(t, ,
(4.45)

Ix(o(, , x(, el-x((t, ,(,
CN(Io(t, e)--N(t, e)l + Ix(t, e)-N(t, e)[)

for 0 to(e), 0 < e N eu. Substitute (4.45) into (4.43), and add the two inequalities.
This gives

Io(t, )-u(t, )l + Ix(t, )-u(t,
(4.46)

N2Cue +2Cue [10(s, e)-u(s, e)l+lx(s, e)-Yu(s, e)l]ds.

By Gronwall’s inequality for 0 to(e) < L/ e,

(4.47) Io(t,e)-(t,e)l+lx(t,e)-(t,e)lce
for some Cu, 0 to(e), 0 < e eu. Therefore,

(4.48) Io(t, e)-u(t, e)[cue N, Ix(t, e)-u(t, e)l cue u.
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But at to(e) this implies that

/91(4.49) O<-[X(to, e)-r(to, e)[ Cre m,
which is impossible for e sufficiently small. The inequality for 0 clearly remains true
for 0 <= <= L/e.

Therefore, there is a unique solution of (4.11) that remains in R"* S3 c R G
and satisfies (4.48) for O<=t<=L/e. But from (4.24), since ur, wN are bounded on
Rm $2 by some Cr > 0, we have

I0 0,,I _-< I0 &l + I& 0,,I-<- 2c,#",
(4.50)

Ix x,,I <_-Ix ,,I + I,, x,l--< 2G,’
for 0 <- <= L/e, 0 < e -< er, er sufficiently small. This proves the main result.

5. A coupled van der Pol oscillator. In this section we will apply the averaging
algorithm developed in 3 to compute the second order asymptotic solution to the
van der Pol system

2 2)22,(5.1) Zl+/’Zl=e(1--z’--az)l, ,2+/2Z2=E(1--Ol.Z21--Z2
where e>0, a>0, a>0, and /./,1,/2,2>0 and satisfy ml/1+m2/2#0 for ml, m2
integers. This system has been studied previously by Hale [15] and Gilsinn [14].

To put (5.1) into form (3.1), first transform it by the variables

(5.2)

Then (5.1) becomes

/A1 Z1, U2 21, W1 Z2, W2 22.

til= u2, 2=-/]ul+e(1-u-aw2)u2,
(5.3)

wa, =-w+- ww.
Then introduce, using (1.8) with/3 ,

/11 41"1 sin/101, U2 =/14Z COS/101,
(5.4)

wl- 422 sin/202, W2-" /24722 COS /202,

into (5.2), where xl, x2 >-0. Then (5.3) becomes

where

(5.6)

and

O=d+e(R)(O,x), 2=eX(O,x),

d
1 01 X1

x= (R)= X=1’
O=

02’ X2 02

(}l(O, X)= -(2-1) (sin 2/lO1- 2Xl sin3/101 COS/ 101 ax2 sin 2/ lO1 sin2/202),

02(0 X)= -(2-2) (sin 2/y02--OXl sin2/101 sin 2/202--2X2 sin3/202 COS /202),

(5.7)
Xl(O, x) 2Xl(COS2 (-) )/101-- sin22/101--ax2cos2/xO1 sin2/202
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The next step is to compute Ul, U2, W1, W2, (I)1, (I)2, R1, R2 in (3.2) and (3.3) in
order to reduce (5.5) to a form (3.3) with N- 2. From (3.19), (3.9) and (5.7) we can
compute directly that

(5 8) l(r)=|0]/\ Rl(r)
\10

rl

r2

Following (3.10), the next step is to solve for Ul, wl so that

(5.9)
Dxu d F(&, r)-x(r) O(&, r),

DlWl d Gl(b, r)-R(r)=X(&, r)-Rl(r),

where

(5.10)

DlUl \0u12/01

Ul W1
/t12 W12

) ((W11/(((b/11/C(2
D W1

0U 12/0(2 tW12/0(

From (5.7), (5.9) and (5.10) one can compute the solutions u, Wl as

Ull
4/z 21 8/z 21 8/z cos 2/z 1(1 "[-

32/z 12 cos 41(1

+
8( _/_t2 COS2/z1(1COS2/2b2+ 8/z(--21 ) sin2ltlsin2/z2b2,

[ 1 crl r2 ] (’3) cos4g   

[ --arl ] [--.1(1 ] sin 2.1&1 sin 2.22,+ 8(--)cos2l&lCOS22&2+ 82( )

[ aflf2] ( ) (alfw
j
sin2+ sin4+ sin216 4/

[ -apt2rlr2 ] [ alzlrlr2 ]+ 4( --/x) COS 2Nl sin 24,+ 4( -x) sin 2N11 COS 2N,

[ ( r (arr2r2 arir2]
i6/ 42’]W12

2 3
sin 22+ sin 4N2+ sin2

--a2rlr2 ] [ a.lrlr2 ]sin 2.11 COS 2.22.[:)J ON 211 sin 2a+ 4(-,)

Now from (3.9) solve for F2(b, r), G2((, r), given by

(5.12)
Fz(&, r) DO(&, r)(ux, wx)-Du(&, r)(, Ra),

G2(q, r) DX(&, r)(//1, Wl)-DWl(q, r)(Cb, R1)
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and then compute the means M+F2 and Mg,G2 from (3.14) and (3.19) and (5.12). Then

(8--a)[1 3 (-3a (/z -/z 2) aatz 2)(I)21 M,21 -l+r+ar2+ 4(-) rrz

@) 3a-2a2. ]a( -)
(5.3

()[ 3 (-3a( -)-a)

R21 =R22 0.

Nayfeh [27] obtains a similar second order expansion for a single van der Pol oscillator.
From (4.5) and (4.8), the initial conditions for the first order approximation are

taken as

(5.14) 410(e) 00, rlo(8) Xo,

where 0o, Xo are the initial conditions for (5.4). For the second order approximation
the initial conditions are given by

(5.15) qbzo(e)=Oo--eUl(Oo, Xo), rzo(e)=xo--eWl(Oo, xo).

From (4.13), the first order approximation is given by

(5.16)

where

01(t, 8) bl(t, e), Xl(t, e) rl(t, e),

(1 d + e (I)l(rl), tl(0, E) (10(E),
(5.17)

k eR 1(rl), rl(0, 8 rlo(8 ).

The second order approximation is given by

02(t, e)= bi(t, e)+ eUl(qb2(t, 8), ri(t, 8)),
(5.18)

xz(t, e) rz(t, e)+ ewl(cz(t, e), rz(t, e)),

where

t2=d+ec1(r2)+e2dp2(r2), t2(0, e) t2o(8),
(5.19)

’2 eRl(r2)+ e2Ri(r2), r2(0, e) r20(e).

In order to test the extent of application of Theorem 4.1, a simulation was
performed on a computer that carried approximately 8 digits in single precision. A
code using an Adams-Moulton procedure was executed using the following selection
of equation parameters:

a 0.1250, [-1 1.0000,
(5.20)

a 0.1250, /-2 1.4142.

The initial conditions used were

(5.21) 01o 020 0.0, Xl0 X20 10.0.
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In the two tables below the absolute errors are computed between the solution
of (5.5) and the first order approximation (5.16) as well as between the solution of
(5.5) and the second order approximation (5.18). The initial conditions for (5.18) are
taken as (5.15), using (5.21).

Table 1 shows the maximum absolute error encountered with e =0.001, 0.01
and 0.1 for the first and second order approximations. Table 2 shows the maximum
absolute error encountered with e 0.001 for 1000 and 10,000 time steps.

In Table 1 the time scale of 100 steps is O(1/0.01), so that the errors in the first
two columns should be consistent with the conclusion of Theorem 4.1. In the first

TABLE
Maximum absolute error ];or 100 simulation time steps of unit

per step.

e 0.001 e =0.01 e =0.1

First Order Approximation

01 0.00254 0.0198 0.1100

Oz 0.00105 0.0102 0.0856

xx 0.01254 0.1030 0.3830

xz 0.00807 0.0570 0.3030

Second Order Approximation

01 0.000290 0.000225 0.00897

02 0.000292 0.000232 0.00953

xl 0.000033 0.002215 0.05750

x2 0.000033 0.001734 0.11600

order approximation the errors should be O(e), which in general they are. The errors
for x seem somewhat out of line at first but, since we do not have a means of
adequately estimating the constant CN in (4.14), a constant of order 10 for the xl

term would explain the result. Even though e 0.1 is large for a time scale of 100
the absolute errors for e 0.1 are still consistent with the theorem. The second order
approximations are also consistent, again noting that we do not have an adequate
bound on CN in (4.14). There is certainly an order of magnitude or greater improvement

TABLE 2
Maximum absolute error or e =0.001 ]:or two time

step histories.

1000 steps 10,000 steps

First Order Approximation

01 0.0322 2.234
02 0.0317 2.234
Xl 0.00889 0.00325
x2 0.00556 0.00238

Second Order Approximation

01 0.0321 2.234
0z 0.0321 2.234
X 0.000213 0.00366
xz 0.000156 0.00300
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in the errors for e =0.001, 0.01. For e =0.1 there is improvement, if not an order
of magnitude in all the variables. In Table 2 the errors for xl, x2 are consistent with
e 0.001, but as would be expected the errors in 01, 02 grow as time progresses..

Neu [29] simulated the second order average of another coupled system. His
results are also consistent with the conclusion that the approximations are good over
a time interval of order O(1/e) but deteriorate afterwards. His particular asymptotic
approximations are also computed in a similar manner to the general results obtained
in this paper, although he was also concerned with eliminating secular terms since he
did not assume a nonresonance condition as we did in (4.9). In general, though, the
two methods are comparable.

6. Acknowledgment. The author wishes to thank the referee for several sugges-
tions that helped clarify the notation. The author’s original hypotheses for Theorem
4.1 were much stronger than necessary, and the referee also made an observation in
the proof that reduced the number of hypotheses, thus strengthening the main theorem.
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